डायमंड, रामोस और ट्रैपोज़ाइड के बीच का अंतर। डायमंड बनाम रामोस बनाम ट्रैपेज़ॉयड
हीरा, राक्षस बनाम ट्रैपेज़ोइड
डायमंड, रामोस, और ट्रैपोज़ाइड सभी चतुर्भुज के रूप में हैं, जो चार पक्षों वाले बहुभुज हैं। चूंकि समभुज और ट्रिप्ज़ियम को गणित में ठीक से परिभाषित किया गया है, हीरा (या हीरा आकृति) एक आम आदमी का शब्द समीकरण के लिए है।
रामोस और डायमंड
बराबर के बराबर सभी पक्षों के साथ एक चतुर्भुज लंबाई में एक समभुज के रूप में जाना जाता है इसे एक समबाहु चतुर्भुज के रूप में भी नाम दिया गया है यह एक हीरा आकार माना जाता है, खेल कार्ड में से एक के समान। डायमंड आकार ठीक तरह से परिभाषित ज्यामितीय इकाई नहीं है।
रामोसस समांतरलोग्राम का विशेष मामला है। यह समान पक्षों के साथ एक समानांतर पत्र के रूप में माना जा सकता है वर्ग को समभुज के एक विशेष मामले के रूप में माना जा सकता है, जहां आंतरिक कोण सही कोण हैं सामान्य रूप में, एक समभुज में निम्नलिखित विशेष गुण हैं:
-2 ->• सभी चार तरफ लंबाई में बराबर हैं (एबी = डीसी = एडी = बीसी)
• समभुज के विकर्णों को एक दूसरे को दाहिनी कोण पर बिजिए; विकर्ण एक दूसरे से लंबवत हैं,
एक समानांतर पत्र के निम्नलिखित गुणों के अलावा
• विरोधी कोणों के दो जोड़े आकार में समान हैं (डीएबी = बी, ए डीसी = ए बीसी)
• आसन्न कोण पूरक हैं डीएबी + ए डीसी = ए डीसी + बी सीडी = बी सीडी + ए बीसी = ए बीसी + डी एबी = 180 डिग्री = π रेड
-3 ->• पक्षों की जोड़ी, जो एक-दूसरे का विरोध कर रहे हैं, समानांतर और लंबाई में समान हैं। (एबी = डीसी और एबीडीडीसी)
• विकर्ण एक दूसरे को बांटते हैं (ए ओ = ओसी, बीओ = ओडी)
• प्रत्येक विकर्ण चतुर्भुज को दो समन्वित त्रिकोणों में विभाजित करता है। (Δ एडीबी ≡ Δ बीसीडी, Δ एबीसी ≡ Δ एडीसी)
• विकर्ण दो विपरीत द्विगुणित आंतरिक कोण
निम्न सूत्र का उपयोग करके समभुज का क्षेत्रफल का आकलन किया जा सकता है।
राक्षस का क्षेत्रफल = आधा (एसी × बीडी)
ट्रेपेज़ोइड (ट्रैपेज़ियम)
ट्रैपेज़ॉइड एक उत्तल चतुर्भुज है जहां कम से कम दो पक्ष समानांतर और लंबाई में असमान हैं। ट्रेपेज़ोइड के समानांतर पक्ष बेस्स के रूप में जाना जाता है और अन्य दो पक्षों को पैर कहा जाता है
trapezoids की मुख्य विशेषताएं निम्नलिखित हैं;
• यदि आसन्न एंगल्स trapezoid के समान आधार पर नहीं हैं, तो वे पूरक कोण हैं। मैं। ई। वे 180 डिग्री (बीए डी + एडी सी = एबी सी + बीसी डी डी = 180 डिग्री) तक जोड़ते हैं
• ट्रेपीजियम के दो विकर्णों को एक ही अनुपात (प्रत्येक विकर्णों के बीच के बीच के अनुपात को एक दूसरे को एक दूसरे को एक दूसरे से जोड़ना)।
• यदि ए और बी कुर्सियां हैं और सी, डी पैर हैं, तो विकर्णों की लंबाई द्वारा दी जाती है> ट्रेपेज़ोइड क्षेत्र का निम्न सूत्र का उपयोग करके गणना की जा सकती है
समांतरलोग्राम और ट्रैपेज़ोइड के बीच का
अंतर पढ़ें डायमंड, रामोस और ट्रेपेज़ॉइड के बीच क्या अंतर है?
• रामोस और ट्रेपेज़ॉइड अच्छी तरह से परिभाषित गणितीय ऑब्जेक्ट हैं जबकि डायमंड आकार एक सामान्य व्यक्ति का शब्द है। प्रत्येक आकार के चार पक्ष होते हैं, और हीरा आकार एक समभुज को संदर्भित करता है।
• एक दूसरे के समानांतर पक्षों के साथ समानताएं हैं, ट्रैपेज़ोइड में असमान पक्ष होते हैं, जिनमें दो पक्ष एक-दूसरे के समानांतर होते हैं। Trapezoid के केवल पैरों के बराबर हो सकता है।
• समभुज के किसी भी विकर्ण को समन्वित त्रिभुज में दो समरूप त्रिकोणों में विभाजित करता है। ट्रेपोज़ाइड के विकर्णों द्वारा गठित त्रिकोण आवश्यक नहीं हैं।
• समभुज के विकर्ण एक दूसरे को एक दूसरे को एक दूसरे को एक दूसरे को एक दूसरे को एक दूसरे को एक दूसरे को छेदते हैं जबकि ट्रेपेज़ोइड के विकर्ण एक दूसरे से लंबवत नहीं होते हैं।
• समभुज के विकर्ण एक दूसरे को द्विगुणित करते हैं जबकि राक्षस के विकर्ण समान अनुपात पर एक दूसरे को छेदते हैं।